A Selection of Representative Publications
For a complete list, please visit my Scopus Profile.
High Dimensional Regression Analysis for Genomic Data
Monti, G.S., Pujolassos, M. T., Calle Rosingana, M. and Filzmoser, P. (2025)
Robust multivariate regression controlling false discoveries for microbiome data.
Bioinformatics.Monti, G.S. and Filzmoser, P. (2022)
A robust knockoff filter for sparse regression analysis of microbiome compositional data.
Computationl Statistics.Monti, G.S. and Filzmoser, P. (2021)
Sparse least trimmed squares regression with compositional covariates for high dimensional data.
Bioinformatics.Monti, G.S. and Filzmoser, P. (2021)
Robust logistic zero-sum regression for microbiome compositional data.
Advances in Data Analysis and Classification.
Compositional Data
Mateu-Figueras, G., Monti, G.S. and Egozcue, J.J. (2021).
Distributions on the simplex revisited.
In P. Filzmoser, K. Hron, J.A. Martin-Fernandez, J. Palarea-Albaladejo, Advances in Compositional Data Analysis Festschrift in Honour of Vera Pawlowsky-Glahn, Springer.Monti, G., Mateu-Figueras, G., Hron, K. (2022).
Additive Logistic Normal Distribution.
In B.S. Daya Sagar, Q. Cheng, J. McKinley, F. Agterberg, Encyclopedia of Mathematical Geosciences. Springer.Migliorati, S., Ongaro, A., Monti, G. (2017).
A structured Dirichlet mixture model for compositional data: inferential and applicative issues.
Statistics and Computing.
Ecological Risk Assessment
Federico, L., Monti, G.S., Loureiro, S. and Villa, S. (2024).
Disaggregation behavior in the terrestrial isopod Porcellionides pruinosus as a new ecotoxicological endpoint for assessing infochemical disrupting activity.
Ecological IndicatorsRizzi, C., Villa, S., Chimera, C., Finizio, A. and Monti, G.S. (2021).
Spatial and temporal trends in the ecological risk posed by polycyclic aromatic hydrocarbons in Mediterranean Sea sediments using large-scale monitoring data.
Ecological IndicatorsMonti, G.S., Filzmoser, P. and Deutsch, R. (2018)
A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.
Risk Analysis.